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Abstract—Most existing large-scale networked systems on the
Internet such as peer-to-peer systems are vulnerable to Sybil
attacks where a single adversary can introduce many bogus
identities. One promising defense of Sybil attacks is to perform
social-network based admission control to bound the number
of Sybil identities admitted. SybilLimit [22], the best known
Sybil admission control mechanism, can restrict the number of
Sybil identities admitted per attack edge to O(log n) with high
probability assuming O(n/ log n) attack edges.

In this paper, we propose Gatekeeper, a decentralized Sybil-
resilient admission control protocol that significantly improves
over SybilLimit. Gatekeeper is optimal for the case of O(1)
attack edges and admits only O(1) Sybil identities (with high
probability) in a random expander social networks (real-world
social networks exhibit expander properties). In the face of
O(k) attack edges (for any k ∈ O(n/ log n)), Gatekeeper admits
O(log k) Sybils per attack edge. This result provides a graceful
continuum across the spectrum of attack edges. We demonstrate
the effectiveness of Gatekeeper experimentally on real-world
social networks and synthetic topologies.

I. INTRODUCTION

Open systems like Digg, Youtube, Facebook and BitTorrent

allow any user on the Internet to join the system easily.

Such lack of strong user identity makes these open systems

vulnerable to Sybil attacks [8], where an attacker can use a

large number of fake identities (Sybils) to pollute the system

with bogus information and affect the correct functioning of

the system. The only known promising defense against Sybil

attacks is to use social networks to perform user admission

control and limit the number of bogus identities admitted to

the system [22], [23], [7], [18]. A link in the social network

between two users represents a real-world trust relationship

between the two users. It is reasonable to assume that an

attacker usually has few links to honest users since establishing

trust links requires significant human efforts. Therefore, Sybil-

resilient admission control can be stated as follows: Consider

a social network G consisting of n honest users and arbitrarily

many Sybils connected to honest nodes via k attack edges

(an attack edge is a link between an honest and a Sybil

node). Given an honest node acting as the admission controller,

determine the set of nodes to be admitted so that the vast

majority of honest nodes in G are admitted and few Sybil

nodes are admitted.

The knowledge of the social graph G may reside with a

single party or be distributed across all users. Centralized node

admission assumes complete knowledge of G (e.g. SybilIn-

fer [7] and SumUp [18]) while distributed admission control
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only requires each user/node to be initially aware of only its

immediate neighbors in G and seeks to discover all the other

honest users/nodes in G. This paper addresses the distributed

node admission control problem.

We make a few important observations about the Sybil-

resilient node admission problem. First, the problem is inher-

ently probabilistic in its definition; hence, we seek to admit

most honest nodes while limiting Sybil nodes. Finding a

perfect algorithm that can detect all honest nodes and reject all

Sybil nodes is fundamentally impossible. Second, the problem

makes no assumption about n, the number of honest nodes in

G. As we show in our result, if the social network exhibits

expander-graph properties, one does not require the knowledge

of n to solve the problem. Third, any distributed admission

control protocol can also be run in a centralized setting and

hence is more general than centralized admission control.

The distributed admission control problem has been studied

in prior work. SybilGuard [23] is the first work to show an

admission protocol which limits the number of admitted Sybil

identities to be O(
√
n logn) per attack edge, where n is the

number of honest users in the social network. SybilLimit [22]

significantly improves over SybilGuard and limits the number

of Sybils admitted per attack edge to O(log n).

In this paper, we present a distributed Sybil-resilient ad-

mission control protocol called Gatekeeper with the following

results:

Theorem: Given a social network G which exhibits a

random expander-graph property, Gatekeeper achieves the

following properties with high probability:

1) In the face of k attack edges with k up to O(n/ logn),
Gatekeeper limits the number of admitted Sybil identities

to be O(log k) per attack edge. This implies that only

O(1) Sybil nodes are admitted per attack edge if the

attacker has O(1) attack edges.

2) Gatekeeper admits almost all honest users.

To achieve these results, Gatekeeper uses an improved

version of the ticket distribution algorithm in SumUp [18] to

perform node admission control in a decentralized fashion.

Gatekeeper executes the ticket distribution algorithm from

multiple randomly chosen vantage points and combines the

results to perform decentralized admission control. We prove

the results under the assumption of random expander graphs,

an assumption that holds for many existing social networks.

Expander graphs are by nature fast-mixing, a common assump-

tion made in SybilLimit and other related protocols [22], [23],

[7], [10].
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Our result establishes optimality and improves over Sybil-

Limit by a factor logn in the face of O(1) attack edges.

Under constraints that attack edges are hard to establish

and there is only a constant number of them, Gatekeeper

is an optimal decentralized protocol for the Sybil-resilient

admission control problem. The general result on admitting

O(log k) Sybils per attack edge in the face of k attack edges

for any k ∈ O(n/ logn) establishes a continuum across the

attack capacity spectrum. This provides a graceful degradation

with increased number of attack edges. In the worst case

when k = O(n/ logn), Gatekeeper achieves the same level of

resilience as SybilLimit where both Gatekeeper and SybilLimit

admit O(log n) Sybils per attack edge with high probability.

We have tested our protocol experimentally on real-world

social networks and synthetic topologies for varying number

of attack edges. Our analysis shows that our protocol is able

to drastically limit the number of admitted Sybil identities

to a very small number while admitting almost all honest

identities. Even when we significantly increase the number

of attack edges to cover ∼ 2% of the nodes, the number of

admitted Sybil identities per attack edge remains very small.

II. RELATED WORK

Traditionally, open systems rely on a central authority who

employs CAPTCHA or computational puzzles to mitigate the

Sybil attack [20], [14], [15]. Unfortunately, these solutions

can only limit the rate with which the attacker can introduce

Sybil identities into the system instead of the total number

of such identities. Even before the recent surge of interest in

social-network-based Sybil defenses, there have been attempts

at exploiting the trust graph among users to mitigate the Sybil

attack: Advogato [11], Appleseed [24] and SybilProof [4] are

the most well-known of these early proposals. However, it is

not the goal of these protocols to perform Sybil-resilient node

admission. Rather, they aim to calculate the reputation of each

user/node in a way that prevents the attacker from boosting

its reputation using Sybil identities. Below, we discuss recent

work in node admission control and related efforts in Sybil-

resilient Distributed Hash Table (DHT) routing.

SybilGuard [23] has pioneered the use of fast-mixing

social networks for Sybil-resilient admission control. Using

a distributed verification protocol based on random routes,

SybilGuard can limit the number of Sybil nodes admitted

per attack edge to O(
√
n logn). SybilLimit [22] improves

this bound to admit no more than O(log n) Sybils per attack
edge with high probability. Yu et al. claim that SybilLimit is

nearly optimal in that its security guarantee is only a factor of

O(log n) away from that of any optimal protocol.

SybilGuard and SybilLimit are both designed to work in

a distributed setting where each node is initially only aware

of its neighbors. By contrast, SybilInfer [7] is a centralized

algorithm which assumes complete knowledge of the social

graph. SybilInfer uses Bayesian inference to assign each node

a probability of being a Sybil. The key observation is that,

if the attacker connects more Sybils to its few attack edges,

the conductance of graph including the Sybil region becomes

smaller to the point that the entire graph is not fast-mixing,

thereby causing the detection of the Sybil nodes. Unlike

SybilGuard and SybilLimit, SybilInfer has no analytical bound

on the number of Sybil nodes admitted per attack edge.

SumUp [18] is another centralized admission algorithm which

admits nodes by computing max-flow paths from a “vote

envelope” to all nodes. SumUp admits O(log n) Sybil nodes

per attack edge on average. In [16], Quercia et al. propose

a Sybil-defense mechanism for the mobile setting where a

node collects graph information from those nodes that it

has previously encountered and analyzes the partial graphs

to determine the likelihood of a node being Sybil. Like

SybilInfer, there is no formal bound for the algorithm in [16].

Recently, Viswanath et al. [19] has performed a comparative

study of SybilGuard, SybilLimit, SybilInfer and SumUp. The

study reveals two potential limitations of social-network based

admission control. First, many small social networks (up to

tens of thousands of nodes) exhibit community structure (i.e.

not fast-mixing), thus causing existing protocols to falsely

reject many honest nodes as Sybils. This finding suggests

that Sybil-resilient admission control must be performed on

large-scale social networks: the larger the graph, the better

connected communities are to each other and the faster the

mixing time. Thus, our evaluations use real world social graphs

that consist of hundreds of thousands of nodes. Second, given

a known admission controller, the attacker can strategically

acquire attack edges close to the controller to gain unfair

advantage. In Gatekeeper, we address this limitation by having

a controller select a few random vantage points for ticket

distribution. Viswanath’s work compares all existing schemes

in a centralized setting even though SybilGuard and SybilLimit

are originally designed to work as a distributed protocol. It

is worth pointing out that Sybil defense is more challenging

in a distributed setting than in a centralized setting. This is

because, in a centralized setting, the attacker must decide upon

the graph structure of the Sybil region before the admission

algorithm starts to execute. On the other hand, in a distributed

setting, the attacker has the freedom to change the Sybil region

of the graph arbitrarily during protocol execution to maximize

its gain.

A Sybil-resilient DHT [10], [6] ensures that DHT lookups

succeed with high probability in the face of an attacker

attempting to pollute the routing tables of many nodes using

Sybil attacks. Danezis et al. [6] leverage the bootstrap tree

of the DHT to defend against the Sybil attack. Two nodes in

such a tree share an edge if one node introduced the other one

into the DHT. The assumption is that Sybil nodes attach to

the tree at a small number of nodes, similar to the few attack

edge assumption in SybilGuard and SybilLimit. Whānau [10]

uses social connections between users to build routing tables

in order to perform Sybil-resilient lookups. Sybil-resilient

node admissions can potentially simplify the construction of

distributed Sybil-resilient protocols by bounding the number

of Sybil identities admitted in the first place.
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III. SYSTEM MODEL AND THREAT MODEL

We use a similar system model and threat model as

those used in previous systems (e.g. SybilLimit [22], Sybil-

Guard [23] and Whānau [10]). The system consists of n honest

nodes belonging to n honest users. There exists an undirected

social graph among all nodes in the system. A link between

two honest users reflects the trust relationship between those

users in the real-world. The knowledge of the social graph is

distributed among all nodes. In particular, each honest node

knows its immediate neighbors on the social graph and may

not know the rest of the graph, including the value of n. Each
node has a locally generated public/private key pair. A node

knows the public-keys of its neighbors, however, there exists

no public-key infrastructure that allows a node to correctly

learn of all other nodes’ public-keys.

The system also has one or more malicious users and each

malicious user controls a number of malicious Sybil nodes.

All Sybil nodes may collude with each other and hence are

collectively referred to as the adversary or attacker. Honest

nodes behave according to the protocol specification while

Sybil nodes are assumed to behave in a Byzantine fashion.

The attacker may know the entire social graph and is able to

create arbitrary links among his Sybil nodes. We assume the

attacker has k links with honest users (attack edges), where k
can be up to O(n/ log n).

Distributed admission control: A node acting as an admis-

sion controller determines which of the other nodes (suspect

nodes) should be admitted into the system. The process can

either be creating a list of admitted nodes, or deciding whether

a particular suspect node can be admitted or not. In the

centralized setting, one typically assumes the existence of a

trusted controller that performs admission control on behalf of

all nodes. By contrast, in the distributed setting, there exists

no centralized source of trust and each node must act as its

own controller. Each controller needs to consult other nodes

to make its admission decisions. We note that a node acts as

its own controller as well as a suspect for other controllers.

Sybil-resilient node admissions: The goal of Sybil-resilient

admission is two-fold – it should accept most honest nodes

and it should admit few Sybil nodes. The attacker aims

to maximize the number of admitted Sybil nodes, and to

minimize the number of admitted honest nodes.

It is worth emphasizing that the number of admitted Sybil

nodes is ultimately dependent on k, the number of attack

edges. Specifically, since attack edges are indistinguishable

from honest edges, any protocol that admits most honest nodes

would admit approximately one Sybil node per attack edge,

resulting in k admitted Sybil nodes. The goal of a Sybil-

resilient admission protocol is to approach this lower bound of

one admitted Sybil node per attack edge. Separate mechanisms

are required to ensure that k is likely to be small. Today’s

popular online social networks like Facebook do not promise

small k. To minimize k, one can use techniques proposed in [2]
and [21] to ensure that honest users only establish trust links

with their close friends in the real-world so that the attacker
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Fig. 1. The ticket distribution process of a particular node S: The
number on each link represents the number of tickets propagated via
that link. The dotted lines are links between nodes at the same distant
to the source.

is unlikely to possess many links to honest users, resulting in

a small k.

IV. DESIGN OVERVIEW

In this section, we first describe the central component

of Gatekeeper, the ticket distribution process. We proceed to

discuss the challenges involved in using ticket distribution for

node admission control and explain how Gatekeeper addresses

these challenges.

A. Ticket Distribution

The principle building block of Gatekeeper is the ticket

distribution process where each node acting as a ticket source

disseminates t “tickets” throughout the social network un-

til a significant portion of the honest nodes receive some

tickets. We originally designed the distribution algorithm for

SumUp [18], a centralized Sybil-resilient vote collection sys-

tem. SumUp uses ticket distribution to assign link capacities

which are needed for its centralized max-flow computation.

As we will see later, Gatekeeper uses ticket distribution

completely differently.

We illustrate the ticket distribution process using the ex-

ample of Figure 1 where the ticket source (S) intends to

disseminate t = 20 tickets. Tickets propagate in a breadth-

first-search (BFS) manner: Each node is placed (conceptually)

at a BFS-level according to its shortest-path distance from S.
S divides the tickets evenly and sends them to its neighbors.

Each node keeps one ticket to itself and distributes the rest

evenly among its neighbors at the next level. In other words,

a node does not send tickets back to neighbors that are at the

same or smaller distance to the source. If a node does not

have any outgoing links to the next level, it simply destroys

all remaining tickets. The process continues until no tickets

remain.

We use ticket distribution as a fundamental building block

in Gatekeeper because of two considerations. First, since each

node only needs knowledge of its immediate neighborhood

to propagate tickets, the entire distribution process can be

realized in a completely distributed manner. Second, as nodes

propagate tickets in a BFS manner from the source, edges
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further away from the ticket source receive exponentially fewer

tickets. Our intuition is that, since the attacker only controls a

small number of attack edges, a randomly chosen ticket source

is relatively “far away” from most attack edges, resulting in

few tickets propagated along an attack edge. As a result,

Gatekeeper may be able to directly use a received ticket as

a token for a node’s admission.

B. Our approach

The naı̈ve strategy for applying ticket distribution to admis-

sion control works as follows: each node admission controller

(S) disseminates n tickets and accepts a suspect node if and

only if it has received some tickets from S. Such a strategy

has two inherent limitations. First, it is infeasible to reach the

vast majority (e.g. > 99%) of honest nodes by distributing n
tickets from a single ticket source. For example, the simulation

experiments in [18] shows that only ∼ 60% honest nodes

receive some tickets. Second, in the presence of a single ticket

source, an attacker may be able to strategically acquire some

attack edge close to the source, resulting in a large amount of

tickets being propagated to Sybil nodes via that attack edge.

The key idea of Gatekeeper is to perform distributed ticket

distribution from multiple ticket sources. In Gatekeeper, an

admission controller explicitly picks m random nodes (using

the random walk technique in [22]) to act as ticket sources.

Each randomly chosen ticket source distributes t tickets where
t is chosen such that n

2 nodes receive some tickets. Later in

Section VII, we will show that a source only needs to send out

t = Θ(n) tickets. We say that a node is reachable from a ticket

source if it has received a ticket disseminated by the source.

The admission controller admits a suspect node if and only if

the node is reachable from at least fadmit ·m ticket sources,

where fadmit is a small constant (our evaluations suggest using

fadmit = 0.2).

Multi-source ticket distribution addresses both limitations

associated with using a single ticket source. The first limitation

is concerned with a single source not being able to reach the

vast majority of honest nodes by sending only t = Θ(n)
tickets. In Gatekeeper, an honest node not reachable from

one source may be reached by other sources. Ultimately, an

honest node is admitted as long as it is reachable by fadmit ·m
sources which is a high probability event. On the other hand,

with a small number of attack edges, the attacker cannot

appear close-by to many m randomly chosen sources, and

thus is unlikely to receive a large number of tickets from

as many as fadmit ·m sources. Therefore, by admitting only

nodes reachable by fadmit · m sources, Gatekeeper ensures

that the number of admitted Sybil nodes per attack edge is

small. The second limitation is concerned with an attacker

strategically acquires some attack edge close to a known ticket

source. Gatekeeper solves this problem because the admission

controller explicitly picks m random ticket sources as opposed

to acting as the ticket source itself. In Section VII, we present

a detailed analysis of these intuitions.

V. GATEKEEPER: THE PROTOCOL

The Gatekeeper protocol consists of two phases: a bootstrap

phase where each node acts as a ticket source to disseminate

Θ(n) tickets throughout the network and an admission phase

where a node acting as the admission controller selects m
ticket sources and accepts another node if that node possesses

tickets from fadmit ·m of the m chosen sources. Below, we

describe the details of these two phases:

A. Bootstrap: decentralized ticket distribution

To bootstrap the protocol, every node performs decentral-

ized ticket distribution with the aim of reaching more than

half of the honest nodes. Since ticket distribution proceeds in

a BFS fashion, a forwarding node needs to know its neighbor’s

“level” (i.e. the neighbor’s shortest path distance to the ticket

source) in order to decide whether to forward that neighbor

any tickets. In order to establish such shortest path knowledge,

all nodes execute a secure path-vector based routing protocol.

We adopt a known secure path-vector protocol [9] where a

node explicitly advertises its shortest path to each ticket source

using a signature chain signed by successive nodes along the

path. As a result, Sybil nodes cannot disrupt the shortest path

calculation among honest nodes.

The number of tickets a source should disseminate, t, is
not a fixed parameter. Rather, each source adapts t iteratively
by estimating whether a sufficiently large fraction of nodes

receive some tickets under the current value of t. We first

describe how a source S disseminates tj tickets in the j-
th iteration and discuss how S adapts tj later. Each ticket

from S consists of the current iteration number j, a sequence

number i ∈ [1..tj], and a message authentication code (MAC)

generated using the private key of S. The MAC is verifiable

by the source and is necessary to prevent the forgery and

tampering of tickets.

A node Q receiving r tickets consumes one of them and

evenly divides the other r − 1 tickets to those neighbors at

the next BFS “level”, i.e. neighbors that are further away

from S than Q. Node Q can learn which neighbors are

further by requesting and verifying its neighbors’ shortest path

signatures. If Q has no such neighbor, it simply discards its

remaining tickets. When Q sends a ticket to its neighbor R, it

explicitly transfers the ownership of that ticket by appending

a tuple 〈Q,R〉 to the ticket and signing the ticket with Q’s

private key. If Q consumes a ticket, it appends itself 〈Q∗〉 to
denote the end of the transfer chain. The use of a signature

chain allows a ticket source to detect a “double-spender”, i.e. a

malicious node that has sent the same ticket to different nodes.

The signature chain scheme represents one of many solutions

for detecting double-spenders. Alternative mechanism include

secure transferable e-cash schemes [5]) which allow a source

node to act as a “bank” issuing e-coins as tickets.

In order to help source S determine its reachable nodes,

each node that has consumed a ticket from S forwards

its ticket in the reverse direction of the ticket’s signature

chain. Suppose S receives a ticket consumed by Q, S must

verify the validity of the signature chain associated with that
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ticket. In particular, S checks that the chain is not “broken”,

e.g., 〈S,A〉, 〈A,B〉, 〈C,Q〉 is not valid because it misses the

link 〈B,C〉. Additionally, S also checks in its database of

received tickets to see if there is any double spending. For

example, if S discovers two tickets (〈S,A〉, 〈A,B〉, 〈B,Q〉)
and (〈S,A〉, 〈A,B′〉, 〈B′, Q′〉), it will blacklist node A as a

double-spender and ignore both tickets. If Q’s ticket passes

verification, S records Q in its database of reachable nodes.

Adjust the number of tickets distributed iteratively:

After a pre-defined time period, the ticket source terminates

the current j-th iteration of ticket distribution, and decides if

it needs to proceed with the (j+1)-th iteration with increased

number of tickets to be distributed. In particular, the ticket

source samples a random subset (W ) of nodes in the social

network by performing a number of random walks. Let R be

the set of reachable nodes in the source’s database. If less

than half of the sampled nodes are within the reachable set,

i.e.
|R∩W |
|W | < 1/2, the source proceeds to the next iteration

(j + 1) with twice the amount of tickets, tj+1 = 2 · tj .
Intuitively, when the attacker controls up to O(n/ logn)

attack edges, only a negligible fraction of nodes (o(1)) are

Sybils in the sampled set (W ) and the reachable set (R). As

a result, if the majority of the sampled nodes (W ) are not

in R, it implies that the amount of tickets distributed in the

current iteration is insufficient and the source should distribute

more tickets in the next iteration. On the other hand, once

the amount of tickets distributed reaches Θ(n), the majority

of honest nodes become reachable, thereby terminating the

iterative process.

Our adaptive ticket adjustment process is similar to the

benchmarking technique used in SybilLimit [22]. In Sybil-

Limit, each node performs O(
√
n) random walks and bench-

marking is used to determine the number of random walks

to perform without explicitly estimating n. Similarly, in Gate-

keeper, each ticket source adaptively decides on the amount

of tickets to distribute (t = Θ(n)) without having to explicitly

estimate n.

B. Node admission based on tickets

After all ticket sources have bootstrapped, each node can

carry out its own admission control to decide upon a list of

nodes to be admitted into the system.

To perform admission control, a controller first selects m
random ticket sources by performing m random walks of

length O(log n). In fast-mixing social networks, a random

walk of lengthO(log n) reaches a destination node drawn from
the node-stationary distribution. Because nodes have varying

degrees, a forwarding node i picks neighbor j as the random

walk’s next hop with a probability weight of min( 1
di
, 1
dj
),

where di and dj are the degree of node i and j, respectively.
This ensures that m random walks sample m nodes uniformly

at random [7]. It is in the attacker’s best interest to claim that

Sybil nodes have degree 1 in order to attract random walks

into the Sybil region. To protect an unlucky controller who is

a friend or a friend-of-a-friend of some Sybil node, we make

an exception for honest nodes to forward random walks to its

neighbors with equal probability during the first two hops of

a random walk. We use the same strategy in [22] to estimate

the required random walk length without the knowledge of n.
The controller asks each of the m chosen ticket sources for

its reachable node list. The controller admits a node if and only

if that node has appeared in more than fadmit · m reachable

lists returned by the m chosen ticket sources. The parameter

fadmit is set to a fixed value 0.2 in our simulations and we

will analyze how to set the appropriate value for fadmit in

Section VII.

VI. PROTOCOL MESSAGE OVERHEAD

We consider the asymptotic message overhead of Gate-

keeper when every node acts as a controller and compare to

that of SybilLimit. During the bootstrap phase, the number of

bits that need to be transferred during the ticket distribution

process of a single source is Θ(n logn) because the source

sends out Θ(n) tickets and each ticket travels a path of length

Θ(logn). Therefore, in a network of n ticket sources, the total

message overhead is Θ(n2 logn). In the admission phase, each

controller obtains m node lists each of size Θ(n) from m
chosen ticket sources. When each node acts as a controller,

the total number of bits transferred during the admission

phase is Θ(n2). Thus, the total message overhead incurred

by Gatekeeper is Θ(n2 log n) + Θ(n2) = Θ(n2 logn). This
overhead is the same as that of SybilLimit if every honest

node aims to admit every other honest node. However, we

must point out that if each controller only intends to admit

a small constant of honest nodes, SybilLimit incurs only

Θ(n
√
n logn) total overhead. By contrast, the total overhead

in Gatekeeper is always Θ(n2 logn) regardless of the number

of honest nodes each controller intends to admit.

In some circumstances, it may be desirable to run Gate-

keeper in a centralized setting using a single admission con-

troller. For example, the online content voting site, Digg.com,

may run Gatekeeper on its social graph using a single con-

troller to decide upon the list of nodes allowed to cast votes. In

these cases, Gatekeeper’s overall runtime is Θ(n logn), which
is much better than that of SybilLimit (Θ(n

√
n logn)).

VII. SECURITY ANALYSIS

We show Gatekeeper’s Sybil-resilience by proving that, if

the attacker possesses k = O(n/ logn) randomly injected

attack edges, a controller admits at most O(log k) Sybil nodes
per attack edge and that each controller admits almost all

honest nodes. Our proof makes certain assumptions about

the social graph formed by honest users, denoted by G.
Specifically, we assume that:

1) G is a fixed degree sequence random graph constructed

by the pairing method in [3], [12] with maximum node

degree d. It has been shown that the pairing method

generates an expander graph with expansion factor α
with high probability. In other words, for every set W
of vertices with fewer than n/2 nodes, |N(W )| ≥ α|W |
where N(W ) denotes the set of vertices adjacent to W
but do not belong to W [1]. Compared to previous work
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which only assumes fast-mixing graphs [23], [22], [10],

expanders represent a stronger assumption. Nevertheless,

expander has been commonly used as reasonable model

for large-scale social graphs.

2) G is reasonably balanced. Let ∆half (v) be the distance

such that v is less than ∆half (v) distance away from

more than half of the honest nodes. In other words,

∆half (v) is the BFS-level when v reaches more than
n
2 nodes. Let dist(u, v) be the distance between u, v.
Define S(v) = {u|u ∈ G, dist(u, v) ≤ ∆half (u)}. In
other words, S(v) represents the set of ticket sources

that deem v as reachable. We say G is balanced if for

almost all v, |S(v)|
n

> fth for a constant threshold value

fth < 0.5. In probabilistic terms, Pr( |S(v)|
n

< fth) for

any randomly chosen v is o(1) (a function asymptot-

ically lower than a constant). Most real world social

graphs satisfy this balance criterion.

A. Gatekeeper admits O(log k) Sybils per attack edge

For this proof, we proceed in two steps: first, we bound the

number of tickets sent to the attacker (via k attack edges) by a

randomly chosen ticket source to O(k log k). Second, we show
at most O(log k) Sybil nodes can receive tickets from more

than fadmit · m of the m ticket sources using the Chernoff

bound.

The more tickets a source distributes, the more tickets that

likely end up with the attacker. Therefore, in order to bound the

number of tickets received by the attacker, we must bound the

number of tickets distributed by a ticket source, as described

formally by the following theorem:

Theorem 7.1: Suppose the graph G is a fixed degree se-

quence random graph constructed by the pairing method. The

expected number of tickets required by a given ticket source

to reach more than n/2 honest nodes is E[t] = Θ(n). (see
proof in technical report [17])

Given a ticket source u, we order honest nodes from

closest to farthest from u according to their BFS level. Let

∆small be the level of the ǫ
k
· n-th node, where ǫ is a small

constant like 0.01. Let ∆big be the level of the (1 − ǫ
k
) · n-

th node. In other words, ∆small,∆big are chosen so that the

BFS levels of 1 − 2ǫ
k

fraction of honest nodes fall between

(∆small,∆big]. As a result, the probability that all k attack

edges are at some distance within the range (∆small,∆big] is
(1 − 2ǫ

k
)k > 1 − 2ǫ, which is high because of small ǫ. Next,

we will bound the number of tickets received by the attacker

for the high probability event that all k attack edges lie within

ticket distribution levels (∆small,∆big].

Lemma 7.1: For a given ticket source u, given that all k
randomly injected attack edges are at some distance in the

range (∆small,∆big] from u, the expected number of tickets

received by the attacker is O(k log k).

Proof: Let Ai be the number of u’s tickets that are sent

from level-i to level-(i+ 1). A0 = t is the number of tickets

distributed by the source u. Let Li be the number of nodes at

level-i. We can calculate the expected number of tickets that

pass though a random node at level (∆small,∆big ] as:

∆big
∑

∆small+1

Ai−1

L(∆small+1) + · · ·+ L∆big

(1)

≤ (∆big −∆small)
A0

L(∆small+1) + · · ·+ L∆big

(2)

By the definition of ∆small and ∆big , we know that

(L(∆small+1)+· · ·+L∆big
) has greater than (1− 2ǫ

k
) fraction of

honest nodes. Furthermore, E(A0) = E(t) = Θ(n) according
to Theorem 7.1. Hence, A0

L∆small+1+···+L∆big

= O(1).

To show that (∆big −∆small) is O(log k) we consider the

two terms (∆half −∆small) and (∆big−∆half ) where ∆half

is the level where we reach the n/2-th node in the BFS tree of

u. Because G is an expander with expansion factor α across

each level, we have ǫ
k
n·α∆half−∆small ≤ n/2. Hence∆half−

∆small is O(log k). Similarly, we can bound ∆big −∆half to

O(log k) by expanding from graph from the ǫ
k
n nodes farthest

from u to the n
2 -th node. Summing up the two results, we

get (∆half −∆small) as O(log k). Hence, we can bound the

expected number of tickets received by a random node within

the level range (∆small,∆big ] to be O(log k). Since an attack

edge is connected to a random node at level within the range

(∆small,∆big ], the expected number of tickets received by

an attack edge is bounded by O(log k). Hence, with k attack

edges all within this range, the expected number of tickets

received by the attacker is O(k log k).

Based on Lemma 7.1, a ticket source gives O(k log k)
tickets to the attacker with k attack edges. However, the

O(k log k) bound is only in expectation and some ticket

sources may give much more than the expected number of

tickets to the attacker. By requiring each admitted node to

receive tickets from at least fadmit ·m of m randomly chosen

sources, we can prove the following theorem:

Theorem 7.2: Gatekeeper admits O(log k) Sybils per attack
edge with high probability.

Proof: Let T1, T2, · · · , Tm be the random variables rep-

resenting the total number of tickets received by the attacker

via k attack edges from each of the m ticket sources. Since

E(Ti) = O(log k), according to Markov’s inequality, there

exist constants, β > 1 and τ < fadmit

2 , such that Pr(Ti >
βk log k) ≤ τ . In other words, the probability that any ticket

source reaches more than βk log k Sybil nodes is bounded by

τ .
We define a new random variable, Zi, as follows:

Zi =

{

1 if Ti ≥ βk log k
0 if Ti < βk log k

Let z = Z1 +Z2 + · · ·+Zm. Since Pr(Zi = 1) < τ , using
Chernoff bound, we can show that

Pr(z ≥ mfadmit

2
) ≤ e−m·D(τ,

fadmit
2

)

where D(τ, fadmit

2 ) is the Kullback-Leibler divergence func-

tion that decreases exponentially with m. Hence, with high
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probability, z ≤ mfadmit

2 . We refer to the i-th source as type-

A if Zi = 1 or as type-B if Zi = 0. Among the m sources,

there are z type-A sources and m− z type-B sources.

Suppose s̄ Sybil nodes are finally admitted. In order to be

admitted, each of the s̄ Sybils can present at most z tickets

from type-A sources. Additionally, all s̄ Sybils can use at most

(m− z)βk log k tickets from type-B sources. Hence, the total

number of tickets that can be used for the admission of s̄
Sybils is at most s̄z + (m − z)βk log k. Since s̄ Sybils need

at least s̄fadmit · m tickets for admission, we arrive at the

following inequality:

s̄ · fadmit ·m ≤ s̄ · z + (m− z) · βk log k

s̄ ≤ (m− z)

fadmit · (m− z)
βk log k

s̄ ≤ 2− fadmit

fadmit

βk log k

s̄

k
= O(log k) �

B. Gatekeeper admits most honest nodes

Theorem 7.3: Gatekeeper admits any honest node with high

probability.

Proof: Recall our earlier definition of S(v), which rep-

resents the set of potential ticket sources that deem v as

reachable. Since G is balanced, the probability that a randomly

chosen ticket source can reach v is at least fth. Since the events
that v is reachable from randomly chosen ticket sources are

independent, we can apply the Chernoff bound to show that

the probability v is reachable from less than fadmit ·m ticket

sources is bounded by e−m·D(fadmit,fth) where D(·) is the

Kullback-Leibler divergence function. Thus, when choosing

fadmit such that fadmit < fth, the probability that an honest

node is not admitted decreases exponentially with m. Hence,

Gatekeeper admits an honest node with high probability.

Note that we have proved both Theorem 7.2 and Theo-

rem 7.3 for the case when all m ticket sources are honest.

A Sybil node may be chosen as a source if a random walk

escapes to the Sybil region of the graph. Let fesc be the

fraction of m sources in the Sybil region. When the attacker

controls up to O(n/ logn) attack edges, with high probability,

fesc is asymptotically smaller than a constant, i.e. fesc = o(1).
Our earlier proofs can be extended to handle fesc = o(1).
Next, we analyze the worst case scenario when fesc is non-

negligible.

C. Worst Case Analysis

The worst case scenario applies to those few unlucky

controllers that are extremely close to some attack edge,

resulting in a non-negligible fesc. Let m
′ be the number of

honest sources, i.e. m′ = (1− fesc) ·m. We adjust the proof

for Theorem 7.2 to handle the case when only m′ sources

are honest. For each of the s̄ Sybils to be admitted, it can

use at most z tickets from type-A ticket sources and at most

(m′−z) ·βk log k from type-B sources. Additionally, s̄ Sybils
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Fig. 2. The number of Sybil nodes accepted per attack edge as a
function of the number of attack edges (k).

can use s̄fesc ·m from those ticket sources in the Sybil region.

Recall that z < fadmitm
′

2 , we have:

s̄ · fadmit ·m ≤ s̄fescm+ s̄z + (m′ − z)βk log k

s̄((fadmit − fesc)m− z) ≤ (m′ − z)βk log k

⇒ s̄

k
≤ (1 − fesc) ·m− z

(fadmit − fesc)m− z
β log k

Therefore, to admit at most O(log k) Sybils per attack edge

(i.e. s̄
k
= O(log k)), the escape probability fesc must be small

enough such that (fadmit − fesc) · m − z > 0. Since z <
fadmitm

′

2 , we obtain that fesc <
fadmit

2−fadmit
.

We adjust the proof of Theorem 7.3 similarly. In order for

an honest node to be admitted, it must possess tickets from

fadmit · m nodes out of the m′ honest sources. Therefore,

we require fadmit < (1− fesc)fth, i.e. fesc < 1− fadmit

fth
. In

summary, to satisfy both Theorem 7.2 and 7.3, we require that

fadmit < min( fadmit

2−fadmit
, 1−fadmit

fth
).

We use fadmit = 0.2 in our evaluations. Therefore, a

controller admits O(log k) Sybil nodes per attack edge as

long as fesc < 0.11. As a concrete example, let us consider

a controller with degree d who is immediately adjacent to the

attacker. In this case, fesc = 1/d. Hence if d is bigger than 9,
fesc will be small enough to satisfy both Theorem 7.2 and 7.3.

If d is smaller than 9, the controller must be more than 1-hop

away from the attacker to ensure that fesc is small enough.

VIII. EVALUATION

We evaluate the effectiveness of Gatekeeper in both syn-

thetic graphs and real-world social network topologies. Specif-

ically, we show that Gatekeeper admits most honest nodes

(> 90% across different topologies) and significantly limits

the number of Sybils admitted per attack edge to a small

value even in the face of a large number of attack edges

(k ≈ 0.02 · n).

A. Experimental Methodology

For real-world social topologies, we use the YouTube [13]

and Digg [18] graph. For synthetic graphs, we generate ran-

dom graphs with average node degree of 6. Table I summarizes

the basic graph statistics. To model the Sybil attack, we
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Data set Synthetic YouTube [13] Digg [18]

Nodes varying 446, 181 539, 242
Undirected edges varying 1, 728, 948 4, 035, 247
Average:median degree 6 : 6 7.7 : 2 15 : 2

TABLE I
SOCIAL GRAPH STATISTICS
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Fig. 3. Fraction of honest nodes admitted under varying fadmit

randomly choose a fraction of nodes to collude with the

attacker so that all the edges of these nodes as attack edges.

The attacker optimally allocates tickets to Sybils to maximize

the number of Sybils admitted. In each simulation run, we

randomly select a controller to perform admission control and

measure the number of Sybils admitted per attack edge and the

number of honest nodes admitted. We repeat each experiment

for 2000 runs and compute the average and the deviation.

Unless otherwise mentioned, a controller uses m = 100 ticket

sources and admits another node if it has received tickets from

at least fadmit = 0.2 fraction of the m sources.

B. Number of Sybils admitted

We first measure the number of Sybil nodes admitted per

attack edge as a function of the number of attack edges (k).
Figure 2 shows the number of admitted Sybil nodes as a

function of k for a random graph with 500, 000 nodes, the

YouTube graph and the Digg graph. Our theoretical result

shows that Gatekeeper admits O(log k) Sybils per attack edge.

Figure 2 confirms our analysis showing that the number of

Sybils admitted per attack edge increases very slowly with k;
even when k reaches 2% of the network size (i.e. k = 10, 000),
the number of Sybils nodes accepted per attack edge remains

smaller than 25.
Unlike SybilLimit, Gatekeeper’s bound on Sybils admitted

per attack edge (O(log k)) is independent of the network size

n for a given k. We have verified this property by running

Gatekeeper on random graphs with different network sizes.

Comparison with SybilLimit: We compare the perfor-

mance of Gatekeeper and SybilLimit under both synthetic

and real graph topologies with k = 60 attack edges. In

separate experiments, we find the parameter values so that

both Gatekeeper and SybilLimit admit > 95% honest nodes

and use these values in our comparison.

Table II summarizes the parameter values used in each

SybilLimit
Dataset Synthetic (n = 500, 000) YouTube Digg

Parameter w 12 15 14

Parameter r 3200 3400 5100

Sybils admitted
per attack edge 40.3 49.1 45.1

Gatekeeper
fadmit 0.2 0.15 0.15

Sybils admitted
per attack edge 1.5 4.9 7.1

TABLE II
COMPARISON WITH SYBILLIMIT

protocol and the number of Sybils admitted per attack edge.

As we can see, SybilLimit admits 40 − 50 Sybils per attack

edge across all the three topologies, while Gatekeeper admits

only 1−7 Sybils nodes per attack edge. Therefore, Gatekeeper

represents a significant improvement over SybilLimit in prac-

tical settings.

Compared to the random graph case, Gatekeeper accepts

more Sybil nodes on the YouTube and Digg graphs because

real-world graphs can exhibit certain asymmetries that are not

present in a random graph. Because of this asymmetry, more

tickets are dropped at some node with no neighbors at the

next BFS-level. Having more ticket drops in turn causes a

ticket source to send more tickets in order to reach more than

half of honest nodes. As a result, attack edges also receive

more tickets, thereby causing more Sybils to be admitted.

C. Admitting honest nodes

The parameters fadmit and m affect the fraction of hon-

est nodes admitted by Gatekeeper. Choosing the appropriate

fadmit is dependent on the balance properties of the graph.

Figure 3 measures the fraction of honest nodes admitted for

different values of fadmit under various topologies. We can see

that larger fadmit results in fewer honest nodes being admitted.

On the other hand, smaller fadmit will increase the number

of Sybils admitted by a constant factor. Since synthetically

generated random graphs are more balanced than YouTube

and Digg graphs, Gatekeeper admits higher fraction of honest

nodes in the random graph than in YouTube and Digg graph

for the same value of fadmit. When fadmit = 0.2, Gatekeeper
can admit more than 90% honest nodes in all three graphs.

Hence, we use 0.2 as the default value for fadmit. We have

also experimented with varying m and found that m = 100
was sufficient to admit most honest nodes across different

topologies. Setting m to be bigger than 100 yields diminishing

returns.

D. Worst case scenario with a close-by attacker edge

The worst case scenario happens for controllers that are

extremely close to some attack edge such that a significant

fraction of the m random walks escape into the Sybil region,

causing the controller to use many Sybil nodes as ticket

sources. To evaluate such worst case scenario, we ran Gate-

keeper from different controllers with varying distances to

some attack edge and recorded the fraction of the chosen ticket

sources that turn out to be Sybil nodes, fesc.
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Figure 4 shows fesc as a function of the distance between

the controller and the closest attack edge under various graph

topologies. We can see that fesc drops off quickly to a

negligible value as long as the controller is more than 2

hops away from the attacker. The worst case comes when the

controller is the immediate neighbor of some attack edges.

We first note that if fesc > fadmit, the controller may

accept arbitrarily many Sybil nodes because the fesc · m
sources can give infinitely many tickets to Sybils. As we

have discussed in Section VII-C, our theoretical bound only

holds when fesc < fadmit

2−fadmit
. Specifically, with a default

value of fadmit = 0.2, fesc must be smaller than 0.11.
When the controller is immediately adjacent to some Sybil

node, the escape probability is 1/d where d is the controller’s

node degree. Hence, only those controllers with more than

9 neighbors can afford to be-friend the attacker while still

satisfying fesc < 0.11 and achieving our proven bound.

IX. CONCLUSION

Gatekeeper is an optimal decentralized admission control

protocol based on social networks that admits O(log k) Sybil
nodes per attack edge with high probability. Our protocol

improves over SybilLimit, the best known Sybil-resilient node

admission protocol by a factor of O(log n) on random ex-

pander graphs when the attacker controls only O(1) attack

edges. Simulation results demonstrate that Gatekeeper works

well on real-world social networks. Even in the face of a large

number of attack edges, Gatekeeper can significantly limit the

number of admitted Sybil nodes per attack edge.
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